On Mining Statistically Significant Attribute Association Information

نویسندگان

  • Pritam Chanda
  • Jianmei Yang
  • Aidong Zhang
  • Murali Ramanathan
چکیده

Knowledge of the association information between the attributes in a data set provides insight into the underlying structure of the data and explains the relationships (independence, synergy, redundancy) between the attributes. Complex models learnt computationally from the data are more interpretable to a human analyst when such interdependencies are known. In this paper, we focus on mining two types of association information among the attributes correlation information and interaction information which capture multivariate dependencies between the data attributes. Identifying the statistically significant attribute associations is a computationally challenging task the number of possible associations increases exponentially and many associations contain redundant information when a number of correlated attributes are present. In this paper, we explore efficient data mining methods to discover non-redundant attribute sets that contain significant association information indicating the presence of informative patterns in the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Efficient Mining of Statistically Significant Attribute Association Information

Knowledge of the association information between the attributes in a data set provides insight into the underlying structure of the data and explains the relationships (independence, synergy, redundancy) between the attributes and class (if present). Complex models learnt computationally from the data are more interpretable to a human analyst when such interdependencies are known. In this paper...

متن کامل

Discovering Deep Knowledge from Relational Data by Attribute-Value Association

Discovering Attribute-Value Association (AVA) is of fundamental importance in knowledge discovery. Market Basket Analysis is an archetypical application. However, most existing algorithms rely only on frequency counts directly obtained from data at the surface and thus cannot reveal deeper knowledge, i.e. the AVAs governed by hidden factors inherent in the data. This paper proposes a new method...

متن کامل

Predicting Missing Attribute Values based on Frequent Itemset and RSFit

How to process missing attribute values is an important data preprocessing problem in data mining and knowledge discovery tasks. A commonly-used and naive solution to process data with missing attribute values is to ignore the instances which contain missing attribute values. This method may neglect important information within the data and a significant amount of data could be easily discarded...

متن کامل

An Architecture for Query Optimization Using Association Rule Mining

This research presents a way to identify attribute-value relationships already existing in a database by using association rule mining to optimize query processing. Once relationships have been determined, these relationships can be used as a basis for creating temporary structures like views to optimize query operations. This paper presents an architecture that shows how table partitions in th...

متن کامل

Compact Weighted Class Association Rule Mining using Information Gain

Weighted association rule mining reflects semantic significance of item by considering its weight. Classification constructs the classifier and predicts the new data instance. This paper proposes compact weighted class association rule mining method, which applies weighted association rule mining in the classification and constructs an efficient weighted associative classifier. This proposed as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010